ar X iv : m at h - ph / 0 30 90 05 v 2 1 7 Ju n 20 04

نویسندگان

  • Robert S. Maier
  • R. S. Maier
چکیده

The band structure of the Lamé equation, viewed as a one-dimensional Schrödinger equation with a periodic potential, is studied. At integer values of the degree parameter l, the dispersion relation is reduced to the l = 1 dispersion relation, and a previously published l = 2 dispersion relation is shown to be partially incorrect. The Hermite–Krichever Ansatz, which expresses Lamé equation solutions in terms of l = 1 solutions, is the chief tool. It is based on a projection from a genus-l hyperelliptic curve, which parametrizes solutions, to an elliptic curve. A general formula for this covering is worked out, and is used to reduce certain hyperelliptic integrals to elliptic ones. Degeneracies between band edges, which can occur if the Lamé equation parameters take complex values, are investigated. If the Lamé equation is viewed as a differential equation on an elliptic curve, a formula is conjectured for the number of points in elliptic moduli space (elliptic curve parameter space) at which degeneracies occur. Tables of spectral polynomials and Lamé polynomials, i.e., band edge solutions, are given. A table in the older literature is corrected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 40 60 24 v 1 1 3 Ju n 20 04 p - Adic wavelet transform and quantum physics ∗

p-Adic wavelet transform is considered as a possible tool for the description of hierarchic quantum systems.

متن کامل

ar X iv : m at h - ph / 0 40 60 11 v 3 2 1 Ju n 20 04 PATH INTEGRALS FOR PARASTATISTICS

We demonstrate that parastatistics can be quantized using path integrals by calculating the generating functionals for time-ordered products of both free and interacting parabose and parafermi fields in terms of path integrals.

متن کامل

ar X iv : 0 90 7 . 20 23 v 1 [ m at h - ph ] 1 2 Ju l 2 00 9 Menelaus relation and Fay ’ s trisecant formula are associativity equations

It is shown that the celebrated Menelaus relation and Fay's trisecant formula similar to the WDVV equation are associativity conditions for structure constants of certain three-dimensional algebra.

متن کامل

ar X iv : m at h - ph / 0 30 90 05 v 3 2 7 Ju n 20 04 Lamé polynomials , hyperelliptic reductions and Lamé band structure

The band structure of the Lamé equation, viewed as a one-dimensional Schrödinger equation with a periodic potential, is studied. At integer values of the degree parameter l, the dispersion relation is reduced to the l = 1 dispersion relation, and a previously published l = 2 dispersion relation is shown to be partially incorrect. The Hermite–Krichever Ansatz, which expresses Lamé equation solut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008